top of page

Predicting Prostate Cancer Recurrence After Radical Prostatectomy

michelleleebravatt

Abra Jeffers, Vanessa Sochat, Michael W Kattan, Changhong Yu, Erin Melcon, Kosj Yamoah, Timothy R Rebbeck, Alice S Whittemore


First published: 24 Oct 2016

PMID: 27775165 PMCID: PMC5877452 DOI: 10.1002/pros.23268


Abstract

Background: Prostate cancer prognosis is variable, and management decisions involve balancing patients' risks of recurrence and recurrence-free death. Moreover, the roles of body mass index (BMI) and race in risk of recurrence are controversial [1,2]. To address these issues, we developed and cross-validated RAPS (Risks After Prostate Surgery), a personal prediction model for biochemical recurrence (BCR) within 10 years of radical prostatectomy (RP) that includes BMI and race as possible predictors, and recurrence-free death as a competing risk.


Methods: RAPS uses a patient's risk factors at surgery to assign him a recurrence probability based on statistical learning methods applied to a cohort of 1,276 patients undergoing RP at the University of Pennsylvania. We compared the performance of RAPS to that of an existing model with respect to calibration (by comparing observed and predicted outcomes), and discrimination (using the area under the receiver operating characteristic curve (AUC)).


Results: RAPS' cross-validated BCR predictions provided better calibration than those of an existing model that underestimated patients' risks. Discrimination was similar for the two models, with BCR AUCs of 0.793, 95% confidence interval (0.766-0.820) for RAPS, and 0.780 (0.745-0.815) for the existing model. RAPS' most important BCR predictors were tumor grade, preoperative prostate-specific antigen (PSA) level and BMI; race was less important [3]. RAPS' predictions can be obtained online at https://predict.shinyapps.io/raps.


Conclusion: RAPS' cross-validated BCR predictions were better calibrated than those of an existing model, and BMI information contributed substantially to these predictions. RAPS predictions for recurrence-free death were limited by lack of co-morbidity data; however the model provides a simple framework for extension to include such data. Its use and extension should facilitate decision strategies for post-RP prostate cancer management. Prostate 77:291-298, 2017. © 2016 Wiley Periodicals, Inc.


Keywords: body mass index; calibration discrimination; prediction model; prostate cancer recurrence.


© 2016 Wiley Periodicals, Inc.


Full text: 10.1002/pros.23268


Please contact us if you are having difficulty accessing the full PDF of this or any MADCaP publication.



4 views0 comments

Recent Posts

See All

Comments


© Copyright 2016-2022 

Dana-Farber Cancer Institute.

Use of MADCaP is subject to our terms of use and our privacy policy.

MADCaP Network
Dana-Farber Cancer Institute
450 Brookline Avenue
Boston, MA 02215

Supported by Dana-Farber Cancer Institute

MADCaP is grant-funded by the National Cancer Institute

NCI_Stacked_COLOR.png
img-logo-2x-new.png
bottom of page